A Transformed System GMM Estimator for Dynamic Panel Data Models ∗

نویسندگان

  • Xiaojin Sun
  • Richard A. Ashley
  • Suqin Ge
  • Kazuhiko Hayakawa
  • Kwok Ping Tsang
چکیده

The system GMM estimator developed by Blundell and Bond (1998) for dynamic panel data models has been widely used in empirical work; however, it does not perform well with weak instruments. This paper proposes a variation on the system GMM estimator, based on a simple transformation of the dependent variable. Simulation results indicate that, in finite samples, this transformed system GMM estimator greatly outperforms its conventional counterpart in estimating the coefficient of the lagged dependent variable, especially when the variation in the fixed effects is large relative to that in the idiosyncratic shocks and when the dependent variable is highly persistent. Applying this transformation also substantially strengthens the reliability of inferences on the overall model specification based upon the Sargan/Hansen test. As illustrations, the transformed system GMM estimator is applied to two empirical examples from the literature: a production function and an employment equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformed Maximum Likelihood Estimation of Short Dynamic Panel Data Models with Interactive Effects∗

This paper proposes the transformed maximum likelihood estimator for short dynamic panel data models with interactive fixed effects, and provides an extension of Hsiao et al. (2002) that allows for a multifactor error structure. This is an important extension since it retains the advantages of the transformed likelihood approach, whilst at the same time allows for observed factors (fixed or ran...

متن کامل

Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models∗

This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are crosssectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that arises, and its implications for estimation and inference. We approach the problem by working with a mis...

متن کامل

Small Sample Bias Properties of the System GMM Estimator in Dynamic Panel Data Models

By deriving the finite sample biases, this paper shows analytically why the system GMM estimator in dynamic panel data models is less biased than the first differencing or the level estimators even though the former uses more instruments.

متن کامل

Efficient Estimation of Dynamic Panel Data Models: Alternative Assumptions and Simplified Estimation

This paper considers the estimation of dynamic models for panel data. It shows how to count and express the moment conditions implied by a variety of covariance restrictions. These conditions can be imposed in a GMM framework. Many of the moment conditions are nonlinear in the parameters. We derive a simple linearized estimator that is asymptotically as efficient as the nonlinear GMM estimator,...

متن کامل

Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models with Cross-Sectional Heteroskedasticity

This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are cross-sectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem and its implications for estimation and inference. We approach the problem by working with a mis-speci…ed ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014